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ABSTRACT

This paper investigates how certain aspects of human

learning can be used to characterize learning in

intelligent adaptive control systems. Reflexive and

declarative memory and learning are described. It

is showm that model-based systems-theoretic adaptive

control methods exhibit attributes of reflexive

learning, whereas the problem-solving capabilities

of knowledge-based systems of artificial intelli-

gence are naturally suited for implementing declara-

tive learning. Issues related to learning in

knowledge-based control systems are addressed, with

particular attention given to rule-based systems. A

mechanism for real-time rule-based knowledge acqui-

sition is suggested, and utilization of this mecha-

nism within the context of failure diagnosis for

fault-tolerant flight control is demonstrated.

I_q_ODUCTION

Adaptability is an essential feature of any control

system designed to interact effectively with the

real world. Uncertainty motivates much of the need

for adaptability, directly affecting control system

stability and performance. Sources of uncertainty

are many, representing inadequacies in knowledge of

the system to be controlled, or in the environment

within which the system must operate. For example,

uncertainty can result from corruption of incoming

information due to sensor noise or failure. It can

also result from changes in control effectiveness

due to failure or unanticipated changes in the oper-

ating environment, changes in system dynamics due to

environmental factors or structural failure, and

unanticipated or poorly-modeled external distur-

bances. Control law design must address to some

degree these issues.

Fortunately, effective control techniques capable

of accommodating certain types of uncertainty exist.

Robust stochastic optimal estimation and control

methods, for example, perform well in the presence

of Gaussian sensor noise and state disturbances [i].

Characteristic changes in the dynamics of the con-

trolled system often can be accommodated using

parameter estimation and adaptive control techniques

12]. Under certain circumstances, self-organizing

controllers may be used to perform non-trivial tasks

given little prior information about the kinematics

and dynamics of the system being controlled

13,4,_,6].
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Even the most accommodating numerical control

techniques, however, be they robust, adaptive, or

self-organizing, eventually reach limits of perform-

ance when deficiencies in knowledge of the plant or

its environment exceed certain thresholds. One lim-

iting factor relates to the ability of the control

system to learn about novel, important relationships

and events in the world, and how to respond properly

to them. Machine learning is an active area of

research in the field of Artificial Intelligence

(AI) [7,8,9,10,11]. However, although problem-

solving techniques of AI are finding their way into

various phases of control system design and imple-

mentation [12,73], little work has addressed the

issue of learning in demanding real-time applica-

tions such as aircraft and spacecraft flight con-

trol.

This paper investigates how certain aspects of

human learning can be used to characterize learning

in "intelligent" control systems. Two types of mem-

ory and learning are described. It is shown that

model-based adaptive control methods are particular-

ly well suited for implementing one type, whereas

the problem-solving capabilities exhibited by

knowledge-based systems of artificial intelligence

make them naturally suited for implementing the oth-

er type. Issues related to learning in knowledge-

based control systems are addressed, with particular

attention given to rule-based systems. A mechanism

for rule-based knowledge acquisition is suggested,

and utilization of this mechanism within the context

of failure diagnosis for fault-tolerant flight con-
tro] is described.

REFLEXIVE AND DECLARATIVE _MORY AND LEARNING

Learning relates to knowledge acquisition, memory to

its storage. Various methods of classification are

used by psychologists to describe different types of

memory and learning exhibited by humans. One clas-
sification scheme is based on how learned informa-

tion is encoded and recalled, distinguishing between
what some authors term reflexive and declarative

memory and learning 114]. With regard to control,

maneuvers indicative of reflexive mechanisms may be

characterized as automatic, requiring little or no

thought. Maneuvers involving declarative memory and

learning, on the other hand, require conscious

effort. Evaluation, comparison, and inference char-

acterize declarative thinking. Moreover, whereas

reflexive learning relates specific responses to

specific stimuli, declarative learning provides

insight into not only how something is done, but

why. Any complex task attempted for the first time

involves some form of declarative reasoning.
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Reflexive and declarative memory and learning are

closely related. Tasks initially learned declara-

tively often become reflexive through repetition.

Conversely, when familiar tasks are attempted in

novel situations, reflexive knowledge must be con-

verted back into declarative form in order to become

useful. For example, although one may become adroit

at tying one's own necktie, tying someone else's

necktie requires some thought due the change in per-'

spective. By drawing analogies to such human infor-

mation processing mechanisms, adaptive control sys-

tems might benefit from the incorporation and

integration of both reflexive and declarative forms

of learning [15].

A simplistic example of learning pertinent to

aircraft flight control demonstrates that distinc-

tions between reflexive and declarative learning can

affect aircraft stability and performance. Consider

what happens when a student pilot is taught how to

recognize and recover from a wings-level approach-

to-landing stall. The student is shown how sluggish

control response and aircraft buffeting indicate low

airspeed and impending stall, and that recovery

includes pushing the control stick forward. Reflex-

ive learning would encode knowledge similar to the

following.

If control response is sluggish

and

buffeting is encountered

then push stick for%'ard

Conversely, declarative learning would result in the

acquisition of knowledge encoding more causal

detail, such as the following.

If

then

control response is sluggish

and

buffeting is encountered

decrease magnitude of angle of attack

If magnitude'decrease in angle of attack

is required

then push stick forward

The type of knowledge acquired by the student,

reflexive or declarative, has a large impact on the

student's ability to apply this knowledge in novel

situations (and hence to adapt). For example, dur-

ing acrobatic flight, the student notices signifi-

cant differences between required control inputs for

inverted and non-inverted flight.

If aircraft is upright

and

magnitude decrease in angle of attack

is required

then push stick forward

If aircraft is inverted

and

magnitude decrease in angle of attack

is required

then pull stick aft

How will the student respond when pre-stall condi-

tions (control" sluggishness and airframe buffeting)

are encounted during inverted flight? A reflexive

response would be based on the relationship between

pre-stall warnings and forward stick movement

learned during non-inverted flight. Such a response

would aggravate the stall. Declarative thinking, on

the other hand, would recognize the need for a

reduction in the magnitude of angle of attack, and

that when inverted such a reduction is accomplished

with aft stick movement.

The distinction between reflexive and declarative

memory and learning suggests what roles existing

systems-theoretic adaptive control techniques and

proposed artificial intelligence methodologies can

pla> in adaptive control systems. Most existing

adaptive control techniques are based (for good rea-

son) on mathematical models of the dynamic system

being controlled. The analytical functions repre-

senting the adaptive control law ultimately calcu-

late specific control commands in response to spe-

cific sensor measurements. In this sense, these

model-based techniques can be viewed as implementing

reflexive knowledge. Conversely, the inferencing

capability of knowledge-based systems can be viewed

as implementing declarative knowledge. Many model-

based adaptive control techniques benefit from the

availability of closed-form analytical expressions

dictating how model parameters should be modified.

Learning often proceeds in a stable and optimal

fashion, and these algorithms should be used when

possible. Unfortunately, with knowledge-based sys-

tems, no such rigorous guidelines for learning

exist.

In general, a learning controller should be able

to identify important new information, decide wheth-

er this new information should augment or replace

existing knowledge, and transfer this information

into the existing knowledge base. Possible schemes

for knowledge acquisition include rote learning,

learning by example, and learning by trial and

error. As mentioned above, much AI research

addresses learning in knowledge-based systems, and

the field of adaptive control most likely will ben-

efit from its advances. Any knowledge-based appli-

cation, however, is based upon a specific form of

knowledge representation. The following sections

suggest that rule-based expert system techniques

provide a sound representational basis for declara-

tive learning in time-critical adaptive control sys-

tems.

REAL-TIME DECLARATIVE LEARNING

THROUGH RULE RECRUITMEh_

The knowledge representation and problem-solving

features of rule-based systems make them particular-

ly _ell-suited for implementing the causal relation-

ships characteristic of declarative learning. More-

over, as will be demonstrated, knowledge acquisition

can be made to occur in the computationally effi-

cient manner required for real-time control. Note

that the discussion below focuses on mechanisms

enabling automated rule-based knowledge acquisition,

not on how this new knowledge is identified.

Within a certain class of forward- and backward-

chaining rule-based systems I16], the knowledge base

is composed of parameters and rules. Parameters

represent symbo]ic information. Each parameter may

acquire one of a list of allowed values, or its val-

ue may be considered unknown. Information express-

ing relationships and dependencies h_tween parameter

values is contained in rules. Each rule contains a

premise and an action. If a rule premise is true
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when tested, its action is executed, causing the

inference of additional information. In control

system applications, rule actions also may perform

specific control tasks. Rule testing is guided by

an inference engine, an operator applied to the

knowledge base enabling the process of search.

Parameters thereby represent a partial description

of the "state of the world", and rule-based search

is used to modify this description. Figure 1

defines a symbology useful in graphically depicting

such a knowledge base. Rectangles contain all val-

ues that the corresponding parameter can acquire.

With arcs between parameters representing rules, the

resultant AND/OR graph can be used to trace the log-

ic path taken by the search process.

Various forms of search may be applied to the

knowledge base. The key to search is the manner in

which rules are linked through parameters. Lists of

rule names associated with each parameter provide

this link. For example, the purpose of a goal-

directed (backward-chaining) search is to infer s

value for a specified parameter. To this end, each

parameter has attached to it a list identifying

which rules are capable of modifying the value of

the parameter through the rule action. This list is

consulted by the inference engine during goal-

directed search when a parameter value must be

inferred.

in general, knowledge acquisition within such a

rule-based system involves three steps. These three

steps are depicted graphically in Fig. 2 to 4 with

reference to the knowledge associated with the stall

recovery scenario given above. First, parameters

capable of representing the "state space" of knowl-

edge to be learned are collected as shown in Fig. 2.

In the second knowledge acquisition step, rules

associating parameter states are constructed as in

Fig. 3. .Finally, rules are linked by updating the

rule-name lists associated with relevant paramesers.

The resultant knowledge base is depicted in Fig. A.

Following incorporation into the knowledge base,

these new rules may be utilized for control system

problem solving. A goal-directed search on the

kno%*ledge of FiE. 4, for example, would begin with

the question, "How should the stick be moved?" or

more specifically the instruction, "Determine the

value of parameter DESIRED STICK HOVEHEh_." Rules 1

and 2 are capable of supplying this information.

Rule I is tested first, with its premise initially

checking aircraft attitude. Assume the aircraft is

inverted. In this case, Rule I fails, and Rule 2 is

tested. The premise of Rule 2 eventually needs to

know whether or not a magnitude decrease in angle of

attack is required. Rule 3 is capable of supplying

this information; therefore it is tested at this

time. If control response is sluggish and buffeting

is encountered, the action of Rule 3 determines that

a change in angle of attack is required, finally

allowing the action of Rule 2 to determine that aft

stick movement is appropriate.

Rules represent executable code. Knowledge

acquisition as specified above involves the automat-

ic generation and execution of code during control

system operation. List-based programming languages

such as LISP can be used to accomplish such feats.

Problems can arise, however, when symbolic program-

ming languages and hardware must be integrated with
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Fig. 1. Graphical Representation of

Rule-Based Knowledge.
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numeric control system processing chores [17]. For-

tunately, by sacrificing some flexibility, real-time

performance can be obtained. For example, by encod-

ing rules in a structured procedural language such

as C or Pascal, and integrating them with numerical

routines in a multiprocessor system, symbolic pro-

cessing capability remains limited, yet powerful

[18,19]. Furthermore, knowledge acquisition can be

enabled in such a system through a process called
rule recruitment.

Rule recruitment involves the manipulation of a
stack of dormant rules. A rule is defined as dor-

mant if it cannot be referenced during search. This
situation will occur if the rule's name does not

appear on any parameter's rule-name list. For exam-

ple, before the rules depicted in Fig. 3 are linked

into the knowledge base through their respective

parameters, they remain dormant and inaccessible to

the inference engine. Simply by manipulating param-
eter lists, rules may be transferred into and out of

dormancy.

Rules on the dormant rule stack serve as rule

"templates". Each retains a fixed premise and

action structure but refers to parameters and param-

eter values indirectly through pointer-type refer-

ences. For example, the following rule template

exhibits a structure capable of encoding the rules

of Fig. 3.

If <parameter pointer> is <value pointer>
and

<parameter pointer> is <value pointer>

:hen set <parameter pointer>

to <value pointer>

By manipulating rule template pointers, rules may be

built automatically as required. The process of

rule recruitment, therefore, involves pulling a rule

template off the dormant rule stack, initializing

its pointers so that it encodes the desired chunk of

knowledge, and modifying the appropriate parameter

lists so that the new rule becomes an active part of

the knowledge base. Figure 5 depicts the process of

rule recruitment.

The major drawback with this knowledge acquisi-

tion mechanism is the inability to build arbitrarily

complex rules at run-time. All desired parameters

must be pre-defined as well. However, by forcing a

system designer to formalize the structure of knowl-

edge to be learned by the controller, these limita-

tions may prove beneficial in the long run. A

restricted set of unique rule templates encourages

modular construction of more complex rules. Fur-

thermore, a large set of unique rule templates may

be designed into the dormant rule stack if needed.

This remedy is memory intensive, not computation

intensive, and memory is inexpensive.

The major advantage associated with rule recruit-

ment is that it is fast. The execution time

incurred during pointer assignment and parameter

list updating is negligible. Moreover, the recruit-

ment of rules can be overseen by other rules dedi-

cated to knowledge acquisition, in much the same way

that meta-rules can be used to guide rule selection

during search [16]. Consequently, the knowledge

acquisition mechanism of rule recruitment fits neat-

ly into the existing computationally efficient rule-

Dased control system environment.

APPLICATION OF RULE RECRUITMENT

TO FLIGHT CONTROL SYSTEM DESIGN

A demanding adaptive control application was chosen

as a testbed for some of the rule-based learning

ideas presented above. The Rule-Based Flight Con-

trol System (RBFCS) is designed to combine analyt-

ical redundancy and expert system concepts for

fault-tolerant flight control [19,20]. The software

and hardware architectures of the RBFCS provide for

real-time integrated symbolic and numeric process-

ing. Within this setting, rule-based learning has

been used in conjunction with model-based simulation

to facilitate certain phases of control system

design.

The RBFCS is intended to detect, identify, and

reconfigure for a wide range of aircraft failures.

The overall job of failure accommodation is broken

down into five main tasks. The Executive Control

Task provides continual dynamic state estimation,

feedback control calculations, and synchronization

of the remaining tasks. The Failure Detection Task

monitors aircraft behavior and detects significant

abnormalities. The Failure Diagnosis Task finds a

set of probable causes of the problem, and the Fail-

ure Model Estimation Task generates a mathematical

model of the aircraft dynamics considered to reflect

changes arising from the assumed failure. Finally,

the Reconfiguration Task determines what action

should be taken to correct the situation. Automated

learning has been used to generate rules relevant to

failure diagnosis.

At the core of the Failure Model Estimation Task

is a numerical algorithm that chooses from among a

group of failure hypotheses the one most likely (in

a probabilistic sense) to represent the actual fail-

ure. The number of hypotheses considered by the

algorithm must be kept low, and this is the job of

the Failure Diagnosis Task, which performs initial

failure candidate screening. The intent is to use

expert system techniques to emulate in real-time the

reasoning of pilots, engineers, and mechanics famil-

iar with the aircraft in order to make informed

judgments as to what did or did not fail [21].

DORMANT RULE STACK

KNOWLEDGE BASE

Fig. 5. Rule Recruitment Learning Mechanism.
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In addition to containing explicitly specified

heuristic knowledge, the Failure Diagnosis Task also

has been given the capability of learning through
simulation how the Failure Detection Task will

respond to various failures. The impetus behind

this capability is the intent to accommodate eventu-

ally an extremely large number of possible failure

modes. The RBFCS presently is configured to accom-
modate a biased or stuck sensor or control in a U.

S. Army CH-47 tandem-rotor helicopter travelling at

SO knots airspeed and sea level altitude. However,

accommodation of structural failures affecting air-

craft dynamics, as well as multiple and intermittent

failures in sensors and controls, is included in the

design goal of the RBFCS. By using analytical mod-

els of these failures, stochastic Monte Carlo type

simulations can be used to characterize the effect

that such complex failures have on failure detec-

tion. Learning by example off-line, the Failure

Diagnosis Task generates a set of rules that approx-

imates the effect of each failure mode. Utilizing

these rules on-line, the task bases its initial

screening of failure candidates, in part, on simi-

larities between available failure-time information

and effects known to be caused by specific types of

failures.

This simulation-based learning by example is

accomplished using rule recruitment. Presently,

seven rules are used to approximate the average

effect each failure mode has on 16 indicators. Win-

dowed average and root-mean-square values of the

residuals of an B-state estimator are used as indi-

cators. The 24 possible failure modes correspond to

abrupt bias and stuck failures in 8 sensors and 4

controls. Sensors measure body-axis longitudinal

velocity, lateral velocity, vertical velocity, roll

rate, pitch rate, yaw rate, pitch angle, and roll

angle. Controls include the two actuators of each

rotor: forward cyclic pitch, forward collective

pitch, aft cyclic pitch, and aft collective pitch.

Each rule has the following form.

If indicator 01 is near x.x

and

indicator 02 is near x.x

and

and

indicator 16 is near x.x

then there is good chance that

forward collective pitch control is

biased from nominal by an amount near x.x

and

failure detection delay is near x.x

The definition of "near x.x" in these rules is

defined by fuzzy functions [22]. Failure detection

delay is the time difference between detection and

occurrence of the failure. Heuristics are used to

distribute the 7 rules per failure mode throughout

the expected failure mode range.

When recruited into the knowledge base, the 168

failure-effect rules integrate features of function

approximation and pattern recognition with the

remaining heuristics of the Failure Diagnosis Task.

They help estimate at failure detection time the

relative likelihood of each failure mode, failure

mode magnitude and direction, and failure detection

delay. The relative likelihood of a failure mode

depends on the validity of its rule's premises, and

it is used to narrow the initial set of failure mode

candidates down to a reasonable size.
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Fig. 6. Rule-Based Failure Diagnosis Performance:

Failure Mode Likelihoods Given

Biased Forward Collective Pitch Control.

Figure 6 illustrates some of the on-llne informa-

tion generated by these off-line recruited rules.

For this figure, bias failures in forward collective

pitch control were simulated using a stochastic

fully-coupled 8th-order linear model of aircraft

dynamics. Failure Diagnosis Task processing zypi-

cally required less than 3 seconds on a computer

equipped with an 8-_l}_z 80286 CPU and an 8-M]{z 80287

ma_h coprocessor. The abscissa of each plot in the

figure corresponds to the amount of failure bias,

normalized for a range of +/- 7.5 cm. Each data

point in a plot corresponds to the average relative

likelihood of the associated failure mode candidate

over 20 simulated failure runs. Failure detection

delays for these bias failures varied between 0.2

sec and 2 sec. Failures remaining undetected 2 sec

after their occurrence were considered undetectable,

explaining the gap in data associated with near-zero

bias failures. It can be seen from the plots in

Fig. 6 that likelihoods associated with the actual

failure mode described as "forward collective pitch

control biased" usually were the highest. Further-

more, other failure mode candidates capable of

strongly affecting longitudinal dynamic state vari-

ables had significant likelihoods, as expected.

Likelihoods associated with failure modes strongly

affecting lateral/directional states (not sho_n)

remained low.
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By applying other heuristics in concert with this

type of information, the Failure Diagnosis Task can

quickly narrow the number of failure mode candidates

from 24 down to 6 or less. Note that due to a rule-

based implementation, the failure-effect knowledge

generating this information can be used on a condi-

tional basis if desired. For example, rule premises

can be made sensitive to previously identified fail-

ures. The rule-based technique thereby exhibits in

this case certain advantages over standard pattern

matching techniques. Additionally, although the

recruited failure diagnosis rules of the RBFCS were

obtained off-line as part of control system design,

the same mechanism of learning could be utilized

during on-line control system operation.

CONCLUSIONS

The problem-solving capabilities of numeric model-

based systems and symbol_c knowledge-based systems

can be used to implement various forms of automatic

learning. The concept of learning through rule
recruitment described above serves as an extension

to work originally designed to integrate such sym-

bolic and numeric processing for real-time control.

Rule recruitment provides a mechanism whereby knowl-

edge may be acquired automatically in a timely man-

ner, allowing rules to generate additional rules.

It can be used as a representational vehicle through
which more fundamental issues of control system

learning may be addressed, such as the acquisition

and maintenance of general knowledge for highly

adaptive aircraft and spacecraft flight control.
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